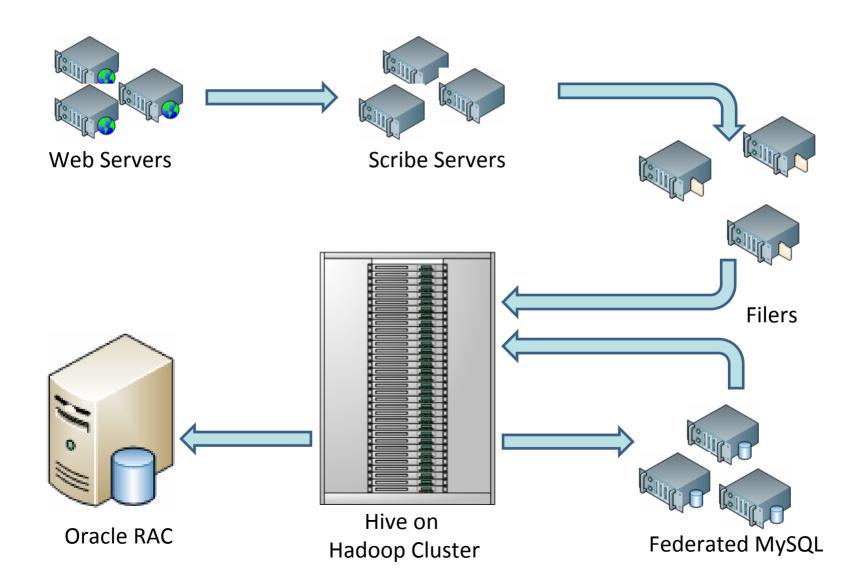
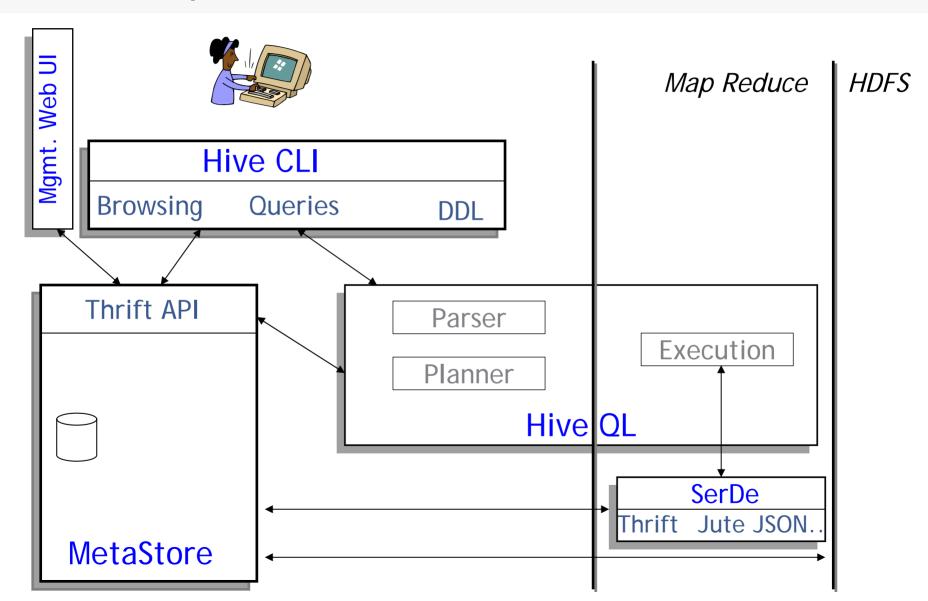
HIVE

Data Warehousing & Analytics on Hadoop

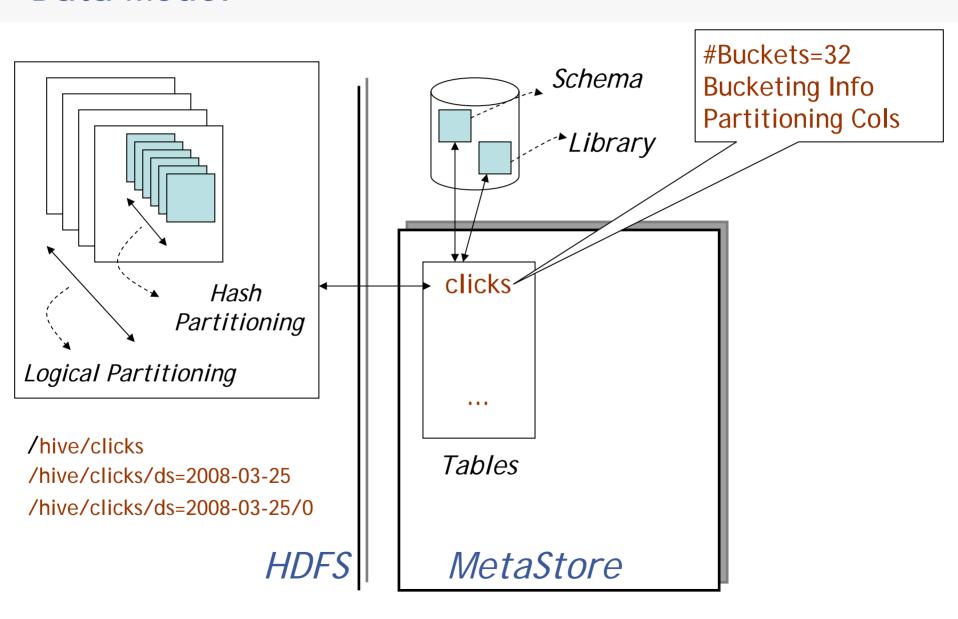
Joydeep Sen Sarma, Ashish Thusoo Facebook Data Team


Why Another Data Warehousing System?

- Problem: Data, data and more data
 - 200GB per day in March 2008 back to 1TB compressed per day today
- The Hadoop Experiment
- Problem: Map/Reduce is great but every one is not a Map/Reduce expert
 - I know SQL and I am a python and php expert
- So what do we do: HIVE


What is HIVE?

- A system for querying and managing structured data built on top of Map/Reduce and Hadoop
- We had:
 - Structured logs with rich data types (structs, lists and maps)
 - A user base wanting to access this data in the language of their choice
 - A lot of traditional SQL workloads on this data (filters, joins and aggregations)
 - Other non SQL workloads


Data Warehousing at Facebook Today

HIVE: Components

Data Model

Dealing with Structured Data

- Type system
 - Primitive types
 - Recursively build up using Composition/Maps/Lists
- Generic (De)Serialization Interface (SerDe)
 - To recursively list schema
 - To recursively access fields within a row object
- Serialization families implement interface
 - Thrift DDL based SerDe
 - Delimited text based SerDe
 - You can write your own SerDe
- Schema Evolution

MetaStore

- Stores Table/Partition properties:
 - Table schema and SerDe library
 - Table Location on HDFS
 - Logical Partitioning keys and types
 - Other information
- Thrift API
 - Current clients in Php (Web Interface), Python (old CLI), Java (Query Engine and CLI), Perl (Tests)
- Metadata can be stored as text files or even in a SQL backend

Hive CLI

- DDL:
 - create table/drop table/rename table
 - alter table add column
- Browsing:
 - show tables
 - describe table
 - cat table
- Loading Data
- Queries

Hive Query Language

- Philosophy
 - SQL like constructs + Hadoop Streaming
- Query Operators in initial version
 - Projections
 - Equijoins and Cogroups
 - Group by
 - Sampling
- Output of these operators can be:
 - passed to Streaming mappers/reducers
 - can be stored in another Hive Table
 - can be output to HDFS files
 - can be output to local files

Hive Query Language

- Package these capabilities into a more formal SQL like query language in next version
- Introduce other important constructs:
 - Ability to stream data thru custom mappers/reducers
 - Multi table inserts
 - Multiple group bys
 - SQL like column expressions and some XPath like expressions
 - Etc..

Joins

Joins

```
FROM page_view pv JOIN user u ON (pv.userid = u.id)
INSERT INTO TABLE pv_users
SELECT pv.*, u.gender, u.age
WHERE pv.date = 2008-03-03;
```

Outer Joins

```
FROM page_view pv FULL OUTER JOIN user u ON (pv.userid = u.id) INSERT INTO TABLE pv_users SELECT pv.*, u.gender, u.age WHERE pv.date = 2008-03-03;
```

Aggregations and Multi-Table Inserts

```
FROM pv_users
INSERT INTO TABLE pv_gender_uu
    SELECT pv_users.gender, count(DISTINCT pv_users.userid)
    GROUP BY(pv_users.gender)
INSERT INTO TABLE pv_ip_uu
    SELECT pv_users.ip, count(DISTINCT pv_users.id)
    GROUP BY(pv_users.ip);
```

Running Custom Map/Reduce Scripts

```
FROM (
FROM pv_users

SELECT TRANSFORM(pv_users.userid, pv_users.date) USING
'map_script'

AS(dt, uid)

CLUSTER BY(dt)) map

INSERT INTO TABLE pv_users_reduced

SELECT TRANSFORM(map.dt, map.uid) USING 'reduce_script'

AS (date, count);
```

Inserts into Files, Tables and Local Files

```
FROM pv_users
INSERT INTO TABLE pv_gender_sum
   SELECT pv_users.gender, count_distinct(pv_users.userid)
   GROUP BY(pv_users.gender)
INSERT INTO DIRECTORY '/user/facebook/tmp/pv_age_sum.dir'
   SELECT pv_users.age, count_distinct(pv_users.userid)
   GROUP BY(pv_users.age)
INSERT INTO LOCAL DIRECTORY '/home/me/pv_age_sum.dir'
   FIELDS TERMINATED BY ',' LINES TERMINATED BY \013
   SELECT pv_users.age, count_distinct(pv_users.userid)
   GROUP BY(pv_users.age);
```

Hadoop Usage @ Facebook

- Types of Applications:
 - Summarization
 - Eg: Daily/Weekly aggregations of impression/click counts
 - Ad hoc Analysis
 - Eg: how many group admins broken down by state/country
 - Data Mining (Assembling training data)
 - Eg: User Engagement as a function of user attributes

Hadoop Usage @ Facebook

- Usage statistics:
 - Total Users: ~140 (about 50% of engineering !) in the last 1 ½
 months
 - Hive Data (compressed): 80 TB total, ~1TB incoming per day
 - Job statistics:
 - ~1000 jobs/day
 - ~100 loader jobs/day

Hadoop Improvements @ Facebook

Some problems:

- No Fair Sharing: Big tasks can hog the cluster
- No snapshots: What if a software bug corrupts the NameNode transaction log

Solutions:

- Simple fair sharing (Matie Zaharia)
- Investigating Snapshots (Dhrubha Bortharkur)

Conclusion

- JIRA http://issues.apache.org/jira/browse/HADOOP-3601
- Soon to be checked into hadoop trunk
- Release available in hadoop version 0.19
- People:
 - Suresh Anthony
 - Zheng Shao
 - Prasad Chakka
 - Pete Wyckoff
 - Namit Jain
 - Raghu Murthy
 - Joydeep Sen Sarma
 - Ashish Thusoo